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Abstract. Finite temperature Euclidean SU(2) lattice gauge fields close to the deconfinement phase tran-
sition are subjected to cooling. We find relatively stable or absolutely stable configurations with an action
below the one-instanton action Sinst = 2π2 both in the deconfinement and the confinement phases. In
this paper we attempt to interpret these lowest action configurations. Their action is purely magnetic and
amounts to S/Sinst ≈ Nt/Ns, where Nt (Ns) is the timelike (spacelike) lattice size, while the topological
charge vanishes. In the confined phase part of the corresponding lattice configurations turns out to be ab-
solutely stable with respect to the cooling process in which case Abelian projection reveals a homogeneous,
purely Abelian magnetic field closed over the “boundary” in one of the spatial directions. Referring to the
dyonic structure established for the confinement phase near Tc and based on the observation made for
this phase that such events below the instanton action Sinst emerge from dyon–antidyon annihilation, the
question of the stability (metastability) is discussed for both phases. The hypothetically different dyonic
structure of the deconfinement phase, inaccessible by cooling, could explain the metastability.

1 Introduction

In the confined phase, below but sufficiently close to Tc,
applying cooling to Monte Carlo generated SU(2) lattice
gauge fields has shown a dyonic structure of metastable
action plateaus [1–4]. The dyons themselves correspond,
in a good approximation, to the constituents of Kraan–van
Baal–Lee–Lu (KvBLL) caloron solutions [5–7]. The same
cooling applied to lattice configurations in the deconfined
phase acts entirely differently. There is no remnant dyonic
structure. Instead of this, there are metastable events on
some lowest action plateau (actually significantly below
the one-instanton action Sinst = 2π2). These configurations
have vanishing topological density, and the action is purely
magnetic. Such configurations have already been observed
and discussed many years ago in papers by Laursen and
Schierholz [8], and Veselov and Polikarpov [9].

In the present paper, from the perspective gained with
the dyonic structure at high enough temperature, we try
to give a new interpretation of the lowest action config-
urations seen in [8, 9]. To reach this goal we study them
both in confined and deconfined phases. In the confinement
phase we are in the fortunate position that we can observe
the parent configurations which sometimes evolve into the
configurations considered here. In all observed cases this
parent configuration was a dyon–antidyon pair. Contrary
to this, in the deconfined phase the cooling technique has
been unable to exhibit potential parent configurations in
the form of action plateaus, i.e. approximate solutions of
the lattice equations of motion (metastable plateaus of ac-

tion). We have critically examined the ’t Hooft–Polyakov
monopole structure of the cooled configurations emerging
from the deconfinement phase that was suggested in [8].
We do confirm to see a minor fraction of magnetic config-
urations which resemble ’t Hooft–Polyakov monopoles at
a first view. However, even for these rare events we find
only a weak correlation between the localization of mag-
netic action and the positions of monopoles defined either
in terms of the Polyakov line or of the magnetic charge in
the Weyl gauge.

On the contrary, the similarity of the action depen-
dence for these configurations on the spatial size of the
lattice suggestively points toward their common nature.
Most likely, in both cases we would expect quantized mag-
netic fluxes. The returned flux (unavoidable in the maximal
Abelian projection for periodic boundary conditions and
manifesting itself as a Dirac string) can be visualized as
a Dirac sheet (swept out by a Dirac string moving in Eu-
clidean time). Hence, we adopt the name Dirac sheets (DS)
for this class of observed cooled lattice configurations. DS
configurations are known as exact solutions of the lattice
field equations in U(1) LGT [10].

This paper is organized as follows.
In Sect. 2wewill provide all necessary lattice definitions,

in particular the observables considered in order to identify
KvB and DS solutions.

In Sect. 3 we report on the statistics and the proper-
ties of DS events observed both in the confined and the
deconfined phases.

Section 4 contains our conclusions.
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2 Production and characterization
of DS solutions

Throughout this paper SU(2) gauge theory in four-di-
mensional Euclidean space is considered on an asymmetric
lattice with periodic boundary conditions in all four di-
rections. The respective ensembles of configurations have
been created by heat bath Monte Carlo using the standard
Wilson plaquette action

S =
∑
x,t

s(x, t) =
∑
x,t

∑
µ<ν

s(x, t; µ, ν), (1)

s(x, t; µ, ν) = β

(
1 − 1

2
tr Ux,µν

)
,

Ux,µν = Ux,µUx+µ̂,νU†
x+ν̂,µU†

x,ν ,

with inverse coupling β = 4/g2
0 . For simplicity the lattice

spacing is set equal to a = 1. The lattice size was N3
s ×

Nt with the spatial extension Ns = 8, 10, 12, 16, 20 and
with the inverse physical temperature T−1 ≡ Nt = 4. For
Nt = 4 the model is known to undergo the deconfinement
phase transition at the critical coupling βc � 2.299 [11].
Throughout this paper we will use two ensembles with
β = 2.2 < βc and β = 2.4 > βc.

The equilibrium field configurations in both ensembles
have been cooled by iterative minimization of the Wilson
action S. In one or another form, cooling is used in order to
smooth out short-range fluctuations, while (initially) leav-
ing untouched some large-scale properties of the configu-
rations. The cooling method applied here is the standard
relaxation method described long time ago in [12] and that
was used for the investigation of instantons [12,13].

This method, if applied without any further limitation,
easily finds approximate solutions of the lattice field equa-
tions as shoulders (plateaus) of the action as a function of
cooling steps (relaxation history). Here we shall concen-
trate on smoothed fields at the very last stages of cooling,
using a stopping criterion which selects the plateaus in the
interval of action S ≤ 0.6 Sinst.

The emerging gauge field configurations were analyzed
according to the spatial distributions of the following ob-
servables:
(1) the action density computed from the local plaque-
tte values:

s(x, t) =
∑
µ<ν

s(x, t; µ, ν) (2)

(see (1));
(2) the topological density computed with the standard
twisted plaquette discretization:

qt(x) = − 1
24 · 32π2

±4∑
µ,ν,ρ,σ=±1

εµνρσtr [Ux,µνUx,ρσ] ; (3)

(3) the Polyakov loop defined by

L(x) =
1
2
trP, (4)

with

P (x) =
Nt∏
t=1

Ux,t,4 , (5)

where the Ux,t,4 represent the links in the time direction;
(4) the non-stationarity defined as:

δt =
∑
x,t

|s(x, t + 1) − s(x, t)|/S ; (6)

(5) the violation of the equations of motion ∆,

∆ =
1

4N3
s Nt

∑
x,µ

1
2
tr

[
(Ux,µ − Ūx,µ)(Ux,µ − Ūx,µ)†] , (7)

where

Ūx,µ = c
∑
ν �=µ

[
Ux,νUx+ν̂,µU†

x+µ̂,ν

+ U†
x−ν̂,νUx−ν̂,µUx+µ̂−ν̂,ν

]

is the local link x, µ being the solution of the lattice equa-
tion of motion, with all degrees of freedom coupled to it
held fixed. The factor c is just a normalization of the staple
sum such that Ūx,µ ∈ SU(2)1;
(6) the Abelian magnetic fluxes and monopole charges de-
fined within the Weyl (or generalized temporal) gauge,
∂0A0 = 0, and the maximally Abelian gauge (MAG).
The first one is obtained from the Polyakov gauge (PolG),
achieved by diagonalizing P (x) in each lattice site, followed
by Abelian gauge transformations which render the (then
diagonal) temporal links Ux,τ ;4 independent on time τ . The
latter is found by maximizing the gauge functional A,

A[g] =
1
2

∑
x,µ

tr(Ug
x,µτ3U

g†
x,µτ3) , (8)

under gauge transformations

Ux,µ → Ug
x,µ = g(x)Ux,µg†(x + µ̂).

The abelianicity is the maximum value of this quantity
divided by the number of links. In both cases, Abelian link
angles θx,µ are then defined by Abelian projection onto
the diagonal U(1) part of the link variables Ux,µ ∈ SU(2).
According to the DeGrand–Toussaint prescription [14] a
gauge invariant magnetic flux Θ̄p through an oriented pla-
quette p ≡ (x, µν) is definedby splitting the plaquetteΘp =
θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν into Θp = Θ̄p + 2πnp, np =
0, ±1, ±2, such that Θ̄p ∈ (−π, +π]. The magnetic charge
of an elementary 3-cube c is then mc = 1

2π
∑

p∈∂c Θ̄p .

For the cooling procedure of equilibrium gauge field con-
figurations we have kept the standard periodic boundary
conditions on the 4D torus.

Finally, cooling was stopped at some (nth) cooling it-
eration step when the following criteria for the action Sn

1 The replacement Ux,µ → Ūx,µ is exactly the local cooling
step as applied throughout this paper.
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Fig. 1. Action of DS events in the con-
fined (triangles) and in the deconfined
(circles) phases for lattices with Nt = 4
and Ns = 8, 10, 12, 16, 20 as a function
of Ns/Nt

were simultaneously fulfilled:
(1) Sn < 0.6 Sinst,
(2) Sn − 2 Sn−1 + Sn−2 < 0.

The last condition means that the relaxation just passed
a point of inflection. As we have empirically observed, the
point of inflection always coincides, within an accuracy of
plus/minus one global cooling step, with a minimal viola-
tion of the equations of motion ∆. This can be understood
as follows. If the violation of the equations of motion ∆ = 0,
i.e., the equations of motion are fulfilled, we are in the local
minimum of the action where its variation is zero. If the
violation of the equations of motion ∆ has a minimum the
variation of the action also has a minimum and the second
variation of the action is zero, which means that the action
goes through the point of inflection.

3 Properties of Dirac sheets
in the confined and the deconfined phases

3.1 Cooling

We have investigated DS events on lattices N3
s × Nt with

Nt = 4 and Ns = 8, 10, 12, 16, 20. The statistics and the
mean actions of various types of configurations selected by
the cooling process are presented in Table 1 and Figs. 1 and
2 where the dependence of S̄/Sinst on Ns/Nt and Nt/Ns
is shown to have the tendency SDS/Sinst → Nt/Ns. Their
properties are summarized in Table 2 and illustrated by
the remaining figures. We have found DS becoming very
stable at action values � Sinst ·Nt/Ns. The (color-) electric
contribution to the total action is very small compared with
the magnetic contribution. Moreover, they are perfectly
static with the values of the non-staticities δt shown in
Table 2. Employing MAG we have convinced ourselves that
they are almost Abelian (see the abelianicity A in Table 2),
and only a small fraction contains MAG monopoles.

In the confinement phase it happens quite rarely that
they appear directly in the result of the cooling process.
In all cases observed they appear after dyon–antidyon
pairs have been observed at S ≈ Sinst which annihilate
in the final stage of relaxation. The Abelian monopole
content of DS in the deconfinement phase, if it is ob-
tained by Abelian projection in the Weyl gauge, amounts
to monopole–antimonopole pairs being present in 60÷90%
of those cooled configurations.

We originally had found this type of solution for fixed
holonomy boundary conditions (FHBC) [1–4]. These DS
for FHBC were seen to be oriented very exactly in plane
and to have non-zero action for plaquettes in one of the
space-space coordinate planes (x, y), (x, z) or (y, z). They
had the same action values S/Sinst as we have found later on
for the case of periodic boundary conditions. We had also
found configurations which contained two DS orthogonal
to each other at action values twice as large as for one DS.
We shall not further comment on such events in this paper.

Table 1. The statistics of DS events on the lattices N3
s × Nt

with Ns = 8, 10, 12, 16, 20 for β = 2.20 (confined phase, upper
row) and β = 2.40 (deconfined phase, lower row). S̄ denotes
the average action of the observed events, δS the variance

β Ns/Nt Nevent S̄/Sinst δS̄/Sinst

2.2 2.0 33 0.479 0.007
2.4 2.0 54 0.471 0.004
2.2 2.5 18 0.392 0.009
2.4 2.5 62 0.387 0.003
2.2 3.0 12 0.331 0.002
2.4 3.0 73 0.323 0.002
2.2 4.0 11 0.249 0.0007
2.4 4.0 66 0.245 0.002
2.2 5.0 7 0.200 0.000
2.4 5.0 28 0.195 0.002
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Table 2. The properties of DS events on the lattices N3
s ×Nt with Nt = 4, Ns = 8, 10, 12, 16, 20.

For each Ns the events are presented in three rows: unstable (upper row) and absolutely stable
(middle row) DS in the confined phase for β = 2.20 and DS in deconfined phase for β = 2.40
(lower row)

Ns/Nt frequency of fraction of DS fraction of DS A ∆ δt

DS events with monopoles with monopoles
in Weyl gauge in MAG

2.0 3.8% 21.1% 5.3% 98.8% 0.223E-05 0.372E-03
2.0 3.2% – – 100% 0.944E-09 0.253E-06
2.0 4.4% 59.1% 6.8% 98.0% 0.355E-05 0.889E-03

2.5 3.0% 41.7% 8.3% 98.9% 0.122E-05 0.426E-03
2.5 4.8% – – 100% 0.167E-15 0.245E-12
2.5 11.3% 79.4% 2.9% 98.8% 0.107E-05 0.512E-03

3.0 2.0% 50.0% – 99.5% 0.378E-06 0.214E-03
3.0 5.7% – – 100% 0.150E-15 0.389E-12
3.0 14.3% 88.4% – 99.1% 0.464E-06 0.397E-03

4.0 0.3% – – 99.9% 0.385E-10 0.103E-07
4.0 5.0% – – 100% 0.760E-15 0.108E-10
4.0 16.0% 72.9% 14.6% 99.5% 0.665E-07 0.149E-03

5.0 – – – – – -
5.0 2.8% – – 100% 0.636E-16 0.245E-11
5.0 18.0% 77.8% 11.1% 99.7% 0.244E-07 0.951E-04

3.2 Can DS configurations be viewed
as ’t Hooft–Polyakov monopoles
in the deconfinement phase?

In contrast to previous parlance (these configurations have
been called “monopole” (M) configurations in [3, 8]) we
have called them here Dirac sheet configurations from the
beginning. Now we want to provide some more facts sup-
porting this interpretation. To begin, let us recall several

features which originally suggested the interpretation as ’t
Hooft–Polyakov monopoles.

There should be
(1) a minimum of the dynamically generated “Higgs field”
tr(A0/T )2;
(2) a maximum of the (almost purely) magnetic action
density trB2;
(3) a pair of pointlike Abelian magnetic charges, one car-
rying the action and the other being spurious.
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Fig. 3. Action density (left) and Polyakov line (right) of an DS event in the deconfined phase shown as a function over the xy
plane cutting through the maximum of the action density

We have studied these signatures for our configurations
cooled down below the one-instanton level starting from
the deconfinement phase, i.e. from equilibrium Monte Carlo
configurations on a 163 × 4 lattice at β = 2.4. All these
configurations have one maximum of the magnetic action
and a relatively shallow maximum of the Polyakov line. A
subset of these configurations, considered in the Weyl or
maximally Abelian gauge, respectively, has a pair of corre-
sponding static magnetic charges. The relative frequencies
actually to find the indicated Abelian monopole structure
is given in Table 2.

One of the cooled configurations with a Weyl gauge
monopole pair is portrayed in Fig. 3, where we show the
profiles of action density and Polyakov line over the (x, z)
plane which cuts the configuration and contains the max-
imum of the action density. In Fig. 4 the positions of the
static monopole pair are projected onto this (x, z) plane.
This event indeed shows a structure as reported in [8].

For a more quantitative assessment, we have compared
the positions of the maxima of the three-dimensional ac-
tion density and the Polyakov loop. We found the average
distance to be equal to 7 ± 2 lattice spacings, whereas for
the maximum of the action density and the position of the
nearest Weyl gauge magnetic monopole the distances are
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Fig. 4. Abelian monopole charge density in Weyl gauge
(summed over z) of the DS event presented on Fig. 3. For static
monopoles the monopole charge density is equal to ±Nt = ±4.
The smearing is due to the interpolation in MATHEMAT-
ICA graphics

somewhat less, 5.2 ± 1.6 lattice spacings. These distances
are certainly smaller than the maximal three-dimensional
distance 8

√
3 ≈ 13 but are difficult to reconcile with a

static extended particle (monopole) interpretation.
Monopoles obtained in the MAG are present only in

approximately < 15% of all DS events (see also Table 2).
One of the rare cases when a DS event in the deconfinement
phase shows an Abelian monopole–antimonopole pair in
MAG is presented in Figs.5 and 6.
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3.3 More on the Dirac sheet interpretation

At this point it might be useful to focus on the striking
volume dependence of the action (common to both phases)
and on the surprising stability of the cooled DS configura-
tions (which distinguishes the confinement phase) in order
to understand similarities and differences between the ways
how these configurations originate from the respective vac-
uum of the two phases.

The dependence of S̄/Sinst on Ns/Nt and Nt/Ns is
shown in Figs. 1 and 2. In the confined phase for Ns = 20
all 7 DS events were absolutely stable with SDS/Sinst =
Nt/Ns. The number Nt/Ns can be understood as follows.
Let there be a quantized homogeneous Abelian magnetic
flux in some spatial (x, y or z) direction. The Abelian
magnetic field is equal to B3

x = 4π/N2
s . Its action is equal

to [10]

SDS =
4
g2
0

(
1 − cos

(
B3

x

2

))
N3

s Nt

≈ 1
2g2

0
(B3

x)
2
N3

s Nt =
8π2

g2
0

Nt

Ns
= Sinst

Nt

Ns
. (9)

All 7 DS events in the confined phase for Ns = 20 (when
put into MAG) show such an Abelian magnetic field. There
arises the question: why for other (smaller) Ns in the con-
fined phase the fluxes are not always homogeneous and
absolutely stable, and why the fluxes are unstable for all
Ns in the deconfined phase. The probable answer is that
the magnetic flux (during the process of DD̄ annihilation)
is not always closed over the “boundary” in some periodic
spatial direction. If the size of dyons in the DD̄ pair is small
compared to the spatial size of the lattice, the annihilation
is almost pointlike and the magnetic flux has a good chance
to be closed.

The size distribution of the dyons depends on the holon-
omy. In the confined phase the measure of holonomy L =
cos(2πω) (ω being the holonomy parameter) is distributed
in the neighborhood of zero. For lower plateaus of the action
the distribution approaches more and more the semicircle
law (Haar measure). Then ω is distributed over the range
0 ≤ ω ≤ 1/2 and the size of the lighter dyon as known
from the KvB solution (Nt/4πω for 0 ≤ ω ≤ 1/4 and
Nt/4π(1/2 − ω) for 1/4 ≤ ω ≤ 1/2 measured in lattice
spacings) varies from Nt/π to the maximal value possible
on the finite lattice. In the deconfined phase, the holonomy
becomes closer and closer to the trivial one (L ≈ ±1) and
the dyons (in the dyon–antidyon pair) are strongly delo-
calized. As mentioned in the Introduction, during cooling
in the deconfined phase the dyon–antidyon pair itself does
not become visible on a well-established plateau.

The correlation between holonomy and stability of DS
events is shown in Fig. 7 for both phases. It can be under-
stood if the configurations are really emerging from the
annihilation of a dyon–antidyon pair. This figure presents
scatter plots where each DS event is represented by two
points: (smin, holonomy) and (smax, holonomy) with smin
and smax being the actiondensity at siteswhere it isminimal
and maximal, respectively. Provided that the holonomy re-
mains far enough from trivial, we obtain DS events from the
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Fig. 7. Correlation between the Polyakov loop L and the sta-
bility of DS configurations, illustrated by scatter plots showing,
for each DS event, two points: (smin, L) (as triangles) and (smax,
L) (as circles) with smin (smax) being the minimal (maximal)
action density of the DS configuration. The left column presents
DS events in the confined phase for lattices with Nt = 4 and
Ns = 8, 12, 16, 20 (from up to down), the right column presents
DS events in the deconfined phase for the same lattice sizes

confined phase which consist of homogeneous Abelian mag-
netic fluxes. The homogeneity is expressed by smin = smax
and corresponds to the successful annihilation of more or
less pointlike dyon–antidyon pairs. However, for values of
holonomy close to trivial holonomy DS events in both con-
fined and deconfined phase occur as unstable magnetic
fluxes which are not closed as the result of annihilation of
less localized (and “massless”, i.e. low-action) dyons. The
unstable DS in confined and deconfined phases have similar
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characteristics as can be seen from the first and third rows
(shown separately for each Ns) in Table 2.

So, unstable DS events in confined and deconfined
phases are similar. There is no absolute gap between unsta-
ble and absolutely stable DS events in the confined phase.
This can be an argument in favor of their common nature.
The stable DS events found in the confined phase are purely
Abelian magnetic fluxes.

4 Conclusions

We have generated SU(2) lattice gauge fields at non-zero
temperature, both in the confined and the deconfined
phases. We have cooled them in order to analyze the struc-
ture of the lowest action plateau (which in fact is below
the one-instanton action). We have found certain structures
(“Dirac sheets”) that resemble homogeneous Abelian mag-
netic fluxes. The action dependence on the spatial lattice
size Ns favors such an interpretation. For the deconfinement
phase, where an ’t Hooft–Polyakov monopole interpreta-
tion has been advocated, the loose correlation between dif-
ferent possible definitions of how to localize the monopole
as an extended heavy particle makes this picture less con-
vincing. Instead, we have looked for another interpretation
in terms of how the original dyonic structure (which is dif-
ferent in the two phases) becomes destroyed by the cooling
process. In the infinite volume limit Ns → ∞, these DS
structures disappear. Therefore, we interpret them as arte-
facts of the finite lattice volume.
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